dc.creator | Patodia, Harish | |
dc.creator | Saikia, Helen | |
dc.date | 2022-06-01 | |
dc.date.accessioned | 2022-07-13T16:11:09Z | |
dc.date.available | 2022-07-13T16:11:09Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4320 | |
dc.identifier | 10.22199/issn.0717-6279-4320 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/196796 | |
dc.description | A positive integer n is called a Zumkeller number if the set of all the positive divisors of n can be partitioned into two disjoint subsets, each summing to σ(n)/2. In this paper, Generalizing further, near-Zumkeller numbers and k-near-Zumkeller numbers are defined and also some results concerning these numbers are established. Relations of these numbers with practical numbers are also studied in this paper. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4320/4058 | |
dc.rights | Copyright (c) 2022 Harish Patodia, Helen Saikia | en-US |
dc.rights | https://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 41 No. 3 (2022); 765-776 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 41 Núm. 3 (2022); 765-776 | es-ES |
dc.source | 0717-6279 | |
dc.source | 10.22199/issn.0717-6279-2022-03 | |
dc.subject | perfect numbers | en-US |
dc.subject | Zumkeller numbers | en-US |
dc.subject | practical numbers | en-US |
dc.subject | fermat primes | en-US |
dc.subject | 11Axx | en-US |
dc.subject | 97F60 | en-US |
dc.title | Near-Zumkeller numbers | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |
dc.type | text | en-US |