Show simple item record

dc.creatorShankar, R.
dc.creatorNalliah, M.
dc.date2022-01-28
dc.date.accessioned2022-07-13T16:11:15Z
dc.date.available2022-07-13T16:11:15Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4420
dc.identifier10.22199/issn.0717-6279-4420
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/196806
dc.descriptionLet G = (V,E) be a graph of order p and size q having no isolated vertices. A bijection ƒ : E → {1, 2, 3, ..., q} is called a local antimagic labeling if for all uv ∈ E we have w(u) ≠ w(v), the weight w(u) = ∑e∈E(u) f(e) where E(u) is the set of edges incident to u. A graph G is local antimagic if G has a local antimagic labeling. The local antimagic chromatic number χla(G) is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we determine the local antimagic chromatic number for some wheel related graphs.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4420/3994
dc.rightsCopyright (c) 2022 R. Shankar, M. Nalliahen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 41 No. 1 (2022); 319-334en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 41 Núm. 1 (2022); 319-334es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2022-01
dc.subjectLocal antimagic labelingen-US
dc.subjectLocal antimagic chromatic numberen-US
dc.subjectHelm graphen-US
dc.subject05C78en-US
dc.subject05C15en-US
dc.titleLocal vertex antimagic chromatic number of some wheel related graphsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record