dc.creator | AL-Kaseasbeh, Saba | |
dc.creator | Erfanian, Ahmad | |
dc.date | 2021-11-29 | |
dc.date.accessioned | 2022-07-13T16:11:15Z | |
dc.date.available | 2022-07-13T16:11:15Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4429 | |
dc.identifier | 10.22199/issn.0717-6279-4357-4429 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/196807 | |
dc.description | Let G be a group and S be a subset of G such that e ∉ S and S−1 ⊆ S. Then Cay(G, S) is a simple undirected Cayley graph whose vertices are all elements of G and two vertices x and y are adjacent if and only if xy−1 ∈ S. The size of subset S is called the valency of Cay(G, S).
In this paper, we determined the structure of all Cay(D2n, S), where D2n is a dihedral group of order 2n, n ≥ 3 and |S| = 1, 2 or 3. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4429/3947 | |
dc.rights | Copyright (c) 2021 Saba AL-Kaseasbeh, Ahmad Erfanian | en-US |
dc.rights | https://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 40 No. 6 (2021); 1683-1691 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 40 Núm. 6 (2021); 1683-1691 | es-ES |
dc.source | 0717-6279 | |
dc.source | 10.22199/issn.0717-6279-2021-06 | |
dc.subject | Valency | en-US |
dc.subject | Cayley graph | en-US |
dc.subject | Dihedral group | en-US |
dc.subject | 05C25 | en-US |
dc.title | The structure of Cayley graphs of dihedral groups of Valencies 1, 2 and 3. | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |
dc.type | text | en-US |