Show simple item record

dc.creatorArathi Bhat, K.
dc.creatorSudhakara , G.
dc.date2022-06-01
dc.date.accessioned2022-08-30T15:59:38Z
dc.date.available2022-08-30T15:59:38Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4638
dc.identifier10.22199/issn.0717-6279-4638
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/207086
dc.descriptionE. Sampath Kumar and L. Pushpalatha [4] introduced a generalized version of complement of a graph with respect to a given partition of its vertex set. Let G = (V,E) be a graph and P = {V₁, V₂,...,Vk} be a partition of V of order k ≥ 1. The k-complement GPk of G with respect to P is defined as follows: For all Vi and Vj in P, i ≠ j, remove the edges between Vi and Vj , and add the edges which are not in G. Analogues to self complementary graphs, a graph G is k-self complementary (k-s.c.) if GPk ≅ G and is k-co-self complementary (k-co.s.c.) if GPk ≅ Ġ with respect to a partition P of V (G). The mth power of an undirected graph G, denoted by Gm is another graph that has the same set of vertices as that of G, but in which two vertices are adjacent when their distance in G is at most m. In this article, we study powers of cycle graphs which are k-self complementary and k-co-self complementary with respect to a partition P of its vertex set and derive some interesting results. Also, we characterize k-self complementary C2n and the respective partition P of V (C2n). Finally, we prove that none of the C2n is k-co-self complementary for any partition P of V (C2n).en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4638/4049
dc.rightsCopyright (c) 2022 K. Arathi Bhat, G. Sudhakaraen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 41 No. 3 (2022); 715-732en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 41 Núm. 3 (2022); 715-732es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2022-03
dc.subjectk-complementen-US
dc.subjectk(i)-complementen-US
dc.subjectk-self complementaryen-US
dc.subjectk-co-self complementaryen-US
dc.subject05C50en-US
dc.subject15A24en-US
dc.titlePowers of cycle graph which are k-self complementary and k-co-self complementaryen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record