dc.creator | Alencar, Jorge | |
dc.creator | de Lima, Leonardo | |
dc.date | 2021-11-29 | |
dc.date.accessioned | 2022-08-30T15:59:39Z | |
dc.date.available | 2022-08-30T15:59:39Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4684 | |
dc.identifier | 10.22199/issn.0717-6279-4684 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/207091 | |
dc.description | Let $G$ be a directed graph on $n$ vertices. The domination polynomial of $G$ is the polynomial $D(G, x) = \sum^n_{i=0} d(G, i)x^i$, where $d(G, i)$ is the number of dominating sets of $G$ with $i$ vertices. In this paper, we prove that the domination polynomial of $G$ can be obtained by using an ordinary generating function, which can be extended to undirected graphs. Besides, we show that our method is useful to obtain the minimum-weighted dominating set of a graph. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4684/3939 | |
dc.rights | Copyright (c) 2021 Jorge Alencar, Leonardo de Lima | en-US |
dc.rights | https://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 40 No. 6 (2021); 1587-1602 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 40 Núm. 6 (2021); 1587-1602 | es-ES |
dc.source | 0717-6279 | |
dc.source | 10.22199/issn.0717-6279-2021-06 | |
dc.subject | Generating function | en-US |
dc.subject | Digraph | en-US |
dc.subject | Domination polynomial | en-US |
dc.subject | Minimum-weighted dominating set problem | en-US |
dc.subject | Algebra | en-US |
dc.subject | Combinatorics | en-US |
dc.subject | Graph Theory | en-US |
dc.title | On the domination polynomial of a digraph: a generation function approach | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |
dc.type | text | en-US |