dc.creator | Velasco Olalla, Rocio | |
dc.date | 2022-07-28 | |
dc.date.accessioned | 2022-08-30T15:59:46Z | |
dc.date.available | 2022-08-30T15:59:46Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5324 | |
dc.identifier | 10.22199/issn.0717-6279-5324 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/207123 | |
dc.description | Fillmore’s theorem is a matrix completion problem that states that if A is a nonscalar matrix over a field F and ϒ1,..., ϒ n ∈ F so that ϒ 1 +...+ ϒ n = tr(A) then there is a matrix similar to A with diagonal (ϒ1,..., ϒn). Borobia [1] extended Fillmore’s Theorem to the matrices over the ring of integers and Soto, Julio and Collao [3] studied it with the nonnegativity hypothesis. In this paper we prove the same result by modifying the initial proof of Fillmore, a subsequent new algorithm is proposed and some new information about the final matrix will be given. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5324/4095 | |
dc.rights | Copyright (c) 2022 Rocio Velasco Olalla | en-US |
dc.rights | https://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 41 No. 4 (2022); 933-940 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 41 Núm. 4 (2022); 933-940 | es-ES |
dc.source | 0717-6279 | |
dc.subject | inverse problem | en-US |
dc.subject | similarity | en-US |
dc.subject | diagonal | en-US |
dc.subject | integer matrix | en-US |
dc.subject | fillmore | en-US |
dc.subject | 15A18 | en-US |
dc.subject | 15A29 | en-US |
dc.title | A new proof of Fillmore’s theorem for integer matrices | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |
dc.type | text | en-US |