Show simple item record

dc.creatorBrondani, Andre Ebling
dc.creatorFrança, Francisca Andrea Macedo
dc.creatorOliveira, Carla Silva
dc.date2022-07-29
dc.date.accessioned2022-08-30T15:59:47Z
dc.date.available2022-08-30T15:59:47Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5428
dc.identifier10.22199/issn.0717-6279-5428
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/207125
dc.descriptionLet G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. For every real α ∈ [0, 1], Nikiforov [21] and Wang et al. [26] defined the matrices Aα(G) and Lα(G), respectively, as Aα(G) = αD(G)+(1−α)A(G) and Lα(G) = αD(G)+(α − 1)A(G). In this paper, we obtain some relationships between the eigenvalues of these matrices for some families of graphs, a part of the Aα and Lα-spectrum of the spider graphs, and we display the Aα and Lα-characteristic polynomials when their set of vertices can be partitioned into subsets that induce regular subgraphs. Moreover, we determine some subfamilies of spider graphs that are cospectral with respect to these matrices.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5428/4098
dc.rightsCopyright (c) 2022 Andre E. Brondani, Francisca Andrea Macedo França, Carla S. Oliveiraen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 41 No. 4 (2022); 965-982en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 41 Núm. 4 (2022); 965-982es-ES
dc.source0717-6279
dc.subjectAα-spectrum, Lα-spectrum, Regular graphs, Spider graphs.en-US
dc.subjectSpectral properties of special matrices of graphsen-US
dc.titleAα and Lα-spectral properties of spider graphsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US


This item appears in the following Collection(s)

Show simple item record