Show simple item record

dc.creatorReji , T.
dc.creatorRuby, R.
dc.date2022-09-27
dc.date.accessioned2022-11-15T12:37:11Z
dc.date.available2022-11-15T12:37:11Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5466
dc.identifier10.22199/issn.0717-6279-5466
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/215697
dc.descriptionFor an ordered k-decomposition D = {G1, G2,...,Gk} of a connected graph G = (V,E), the D-representation of an edge e is the k-tuple γ(e/D)=(d(e, G1), d(e, G2), ...,d(e, Gk)), where d(e, Gi) represents the distance from e to Gi. A decomposition D is resolving if every two distinct edges of G have distinct representations. The minimum k for which G has a resolving k-decomposition is its decomposition dimension dec(G). In this paper, the decomposition dimension of corona product of the path Pn and cycle Cn with the complete graphs K1 and K2 are determined.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5466/4152
dc.rightsCopyright (c) 2022 T. Reji , R. Rubyen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 41 No. 5 (2022); 1239-1250en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 41 Núm. 5 (2022); 1239-1250es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2022-05
dc.subjectdecomposition dimensionen-US
dc.subjectcorona producten-US
dc.subjectpathen-US
dc.subjectcycleen-US
dc.subject05C38en-US
dc.subject05C70en-US
dc.titleDecomposition dimension of corona product of some classes of graphsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record