Show simple item record

dc.creatorTaghavi, Ali
dc.creatorFerreira, João Carlos
dc.creatorMarietto, Maria das Graças
dc.date2023-01-26
dc.date.accessioned2023-03-09T18:10:05Z
dc.date.available2023-03-09T18:10:05Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5139
dc.identifier10.22199/issn.0717-6279-5139
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/223032
dc.descriptionLet A and B be two prime complex ∗-algebras. We proved that every bijective mapping Φ : A → B satisfying Φ(a ◊+ b∗ a) = Φ(a)◊Φ(b) + Φ(b)∗Φ(a) (resp., Φ(a∗ ◊b + ab∗) = Φ(a)∗ ◊Φ(b) + Φ(a)Φ(b)∗), where a ◊b = ab + ba∗, for all elements a, b ∈ A, is a ∗-ring isomorphism.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5139/4228
dc.rightsCopyright (c) 2023 Ali Taghavi, João Carlos Ferreira, Maria das Graças Mariettoen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 42 No. 1 (2023); 18-31en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 42 Núm. 1 (2023); 18-31es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2023-01
dc.subject∗-ring isomorphismsen-US
dc.subjectprime algebrasen-US
dc.subject∗-algebrasen-US
dc.subject47B48en-US
dc.subject46L10en-US
dc.titleMappings preserving sum of products a◊b + b*a (resp., a*◊b + ab*) on ∗-algebrasen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record