A note on m-Zumkeller cordial labeling of graphs
Author
Patodia, Harish
Saikia, Helen K.
Full text
https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/519010.22199/issn.0717-6279-5190
Abstract
Let G(V,E) be a graph. An m-Zumkeller cordial labeling of the graph G is defined by an injective function f:V -> N such that there exists an induced function f*:E -->{0,1} defined by f* (uv)=f(u).f(v) that satisfies the following conditions:i) For every uv in E,
f*(uv)= ii) |ef*(0)-ef*(1)|<=1where ef*(0) and ef*(1) denote the number of edges of the graph G having label 0 and 1 respectively under f*.In this paper we prove that there exist an m -Zumkeller cordial labeling of graphs viz., (i) paths (ii) cycles (iii) comb graphs (iv) ladder graphs (v) twig graphs (vi) helm graphs (vii) wheel graphs (viii) crown graphs (ix) star graphs.
Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
Graceful centers of graceful graphs and universal graceful graphs.
Makadia, H. M.; Karavadiya, H. M.; Kaneria, V. J.. Proyecciones. Journal of Mathematics; Vol 38 No 2 (2019); 305-314 -
Equitable Graph of a Graph
Dharmalingam, Kuppusamy Makandan. Proyecciones. Journal of Mathematics; Vol 31 No 4 (2012); 363-372 -
Irregularity indices for line graph of Dutch windmill graph
Mohammed, Mohanad A.; AL-Mayyahi, Suad Younus A. AL-Mayyahi; Virk, Abaid ur Rehman; Rehman, Hafiz Mutee ur. Proyecciones (Antofagasta, On line); Vol. 39 No. 4 (2020): Special Issue: Mathematical Computation in Combinatorics and Graph Theory; 903-918