Show simple item record

dc.creatorMalur, Raksha
dc.creatorDominic, Charles
dc.date2023-01-26
dc.date.accessioned2023-03-09T18:10:06Z
dc.date.available2023-03-09T18:10:06Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5305
dc.identifier10.22199/issn.0717-6279-5305
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/223035
dc.descriptionZero forcing number of a graph is the minimum cardinality of the zero forcing set. A zero forcing set is a set of black vertices of minimum cardinality that can colour the entire graph black using the color change rule: each vertex of G is coloured either white or black, and vertex v is a black vertex and can force a white neighbour only if it has one white neighbour. In this paper we identify a class of graph where the zero forcing number is equal to the minimum rank of the graph and call it as a new class of graph that is open global shadow graph”. Some of the basic properties of open global shadow graph are studied. The zero forcing number of open global shadow graph of a graph with upper and lower bound is obtained. Hence giving the upper and lower bound for the minimum rank of the graph.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5305/4229
dc.rightsCopyright (c) 2023 Raksha Malur, Charles Dominicen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 42 No. 1 (2023); 33-52en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 42 Núm. 1 (2023); 33-52es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2023-01
dc.subjectzero forcing seten-US
dc.subjectzero forcing numberen-US
dc.subjectopen global shadow graphen-US
dc.subject05C07en-US
dc.subject05C38en-US
dc.subject05C50en-US
dc.subject05C69en-US
dc.titleOpen global shadow graph and it’s zero forcing numberen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record