Show simple item record

dc.creatorZeen El Deen, Mohamed
dc.date2023-03-27
dc.date.accessioned2023-05-11T20:42:07Z
dc.date.available2023-05-11T20:42:07Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4664
dc.identifier10.22199/issn.0717-6279-4664
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/225562
dc.descriptionIn graph theory, a prism over a graph G is the cartesian product of the graph G with P₂. The purpose of this work is to investigate the complexity of the prisms of some path and cycle-related graphs. In particular, we obtain simpler and more explicit formulas for the complexity of a special class of prisms of path-related graphs: fan graph, ladder graph, the composition Pn[P₂] graph, and book graph. Moreover, we obtain straightforward formulas for the complexity of a special class of prisms of cycle-related graphs: wheel graph, gear graph, prism graph, n−crossed prism graph, mirror graph M(Cn) of even cycle Cn, twisted prism, total graph T(Cn) of the cycle Cn, the friendship graph, the flower graph, and planner sunflower graph. These closed formulas are deduced using some basic properties of block matrix, recurrence relation, eigenvalues of circulant matrices, and orthogonal polynomials.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4664/4257
dc.rightsCopyright (c) 2023 Mohamed Zeen El Deenen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 42 No. 2 (2023); 339-391en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 42 Núm. 2 (2023); 339-391es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2023-02
dc.subjectcomplexityen-US
dc.subjectrecurrence relationen-US
dc.subjectprism over a graphen-US
dc.subjectChebyshev polynomialsen-US
dc.subject05C05en-US
dc.subject05C50en-US
dc.subject05C90en-US
dc.titleEnumeration of spanning trees in prisms of some graphsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record