dc.creator | Titus, P. | |
dc.creator | Subha, M. | |
dc.creator | Santha Kumari, S. | |
dc.date | 2023-03-27 | |
dc.date.accessioned | 2023-05-11T20:42:07Z | |
dc.date.available | 2023-05-11T20:42:07Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4781 | |
dc.identifier | 10.22199/issn.0717-6279-4781 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/225564 | |
dc.description | In a graph G, a chordless path is called a monophonic path. A collection ψm of monophonic paths in G is called a monophonic graphoidal cover of G if every vertex of G is an internal vertex of at most one monophonic path in ψm and every edge of G is in exactly one monophonic path in ψm. The monophonic graphoidal covering number ηm(G) of G is the minimum cardinality of a monophonic graphoidal cover of G. In this paper, we find the monophonic graphoidal covering number of corona product of some standard graphs. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4781/4255 | |
dc.rights | Copyright (c) 2023 P. Titus, M. Subha, S. Santha Kumari | en-US |
dc.rights | https://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 42 No. 2 (2023); 303-318 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 42 Núm. 2 (2023); 303-318 | es-ES |
dc.source | 0717-6279 | |
dc.source | 10.22199/issn.0717-6279-2023-02 | |
dc.subject | graphoidal cover | en-US |
dc.subject | monophonic path | en-US |
dc.subject | monophonic graphoidal cover | en-US |
dc.subject | monophonic graphoidal covering number | en-US |
dc.subject | 05C | en-US |
dc.title | Monophonic graphoidal covering number of corona product graphs | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |
dc.type | text | en-US |