Show simple item record

dc.creatorEl Idrissi, Nizar
dc.creatorKabbaj, Samir
dc.creatorMoalige, Brahim
dc.date2023-05-09
dc.date.accessioned2023-05-11T20:42:08Z
dc.date.available2023-05-11T20:42:08Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4818
dc.identifier10.22199/issn.0717-6279-4818
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/225567
dc.descriptionIf H is a Hilbert space, the non-compact Stiefel manifold St(n, H) consists of independent n-tuples in H. In this article, we contribute to the topological study of non-compact Stiefel manifolds, mainly by proving two results on the path-connectedness and topological closure of some sets related to the non-compact Stiefel manifold. In the first part, after introducing and proving an essential lemma, we prove that ∩j∈J (U(j) + St(n, H)) is path-connected by polygonal paths under a condition on the codimension of the span of the components of the translating J-family. Then, in the second part, we show that the topological closure of St(n, H)∩S contains all polynomial paths contained in S and passing through a point in St(n, H). As a consequence, we prove that St(n, H) is relatively dense in a certain class of subsets which we illustrate with many examples from frame theory coming from the study of the solutions of some linear and quadratic equations which are finite-dimensional continuous frames. Since St(n, L2(X, μ; F)) is isometric to, FF(X, μ), n, this article is also a contribution to the theory of finite-dimensional continuous Hilbert space frames.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4818/4287
dc.rightsCopyright (c) 2023 Nizar El Idrissi, Samir Kabbaj, Brahim Moaligeen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 42 No. 3 (2023); 571-597en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 42 Núm. 3 (2023); 571-597es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2023-03
dc.subjectStiefel manifolden-US
dc.subjectcontinuous frameen-US
dc.subjectpath-connected spaceen-US
dc.subjecttopological closureen-US
dc.subjectdense subseten-US
dc.subject57N20en-US
dc.subject42C15en-US
dc.subject54D05en-US
dc.subject54D99en-US
dc.titlePath-connectedness and topological closure of some sets related to the non-compact Stiefel manifolden-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record