dc.creator | Deka, Kumar Napoleon | |
dc.creator | Saikia, Helen K. | |
dc.date | 2023-05-09 | |
dc.date.accessioned | 2023-05-11T20:42:08Z | |
dc.date.available | 2023-05-11T20:42:08Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4849 | |
dc.identifier | 10.22199/issn.0717-6279-4849 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/225569 | |
dc.description | In [4] Wei and Libin defined Quasi normal ring. In this paper we attempt to define Quasi-k-normal ring by using the action of k-potent element. A ring is called Quasi-k-normal ring if ae = 0 ⇒ eaRe = 0 for a ∈ N(R)and e ∈ K(R), where K(R) = {e ∈ R|ek = e}. Several analogous results give in [4] is defined here. we find here that a ring is quasi-k-normal if and only if eR(1 − ek−1)Re = 0 for each e ∈ K(R). Also we get a ring is quasi-k-normal ring if and only if Tn(R, R) is quasi-k-normal ring. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4849/4288 | |
dc.rights | Copyright (c) 2023 Kumar Napoleon Deka, Helen K. Saikia | en-US |
dc.rights | https://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 42 No. 3 (2023); 599-608 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 42 Núm. 3 (2023); 599-608 | es-ES |
dc.source | 0717-6279 | |
dc.source | 10.22199/issn.0717-6279-2023-03 | |
dc.subject | Abelian rings | en-US |
dc.subject | quasi-k-normal rings | en-US |
dc.subject | Π-regular rings | en-US |
dc.subject | 16A30 | en-US |
dc.subject | 16A50 | en-US |
dc.subject | 16E50 | en-US |
dc.subject | 16D30 | en-US |
dc.title | Quasi-k-normal ring | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |
dc.type | text | en-US |