Show simple item record

dc.creatorGrama, Lino
dc.creatorSoriani, Leonardo
dc.date2023-03-27
dc.date.accessioned2023-05-11T20:42:12Z
dc.date.available2023-05-11T20:42:12Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5481
dc.identifier10.22199/issn.0717-6279-5481
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/225586
dc.descriptionIn this short note we describe the isomorphism of generalized complex structure between T-dual manifolds introduced by Cavalcanti-Gualtieri, in the case of elliptic curves. We also compare this isomorphism with the mirror map for elliptic curves described by Polishchuk and Zaslow.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5481/4261
dc.rightsCopyright (c) 2023 Lino Grama, Leonardo Sorianien-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 42 No. 2 (2023); 445-456en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 42 Núm. 2 (2023); 445-456es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2023-02
dc.subjectgeneralized complex geometryen-US
dc.subjectmirror symmetryen-US
dc.subjectelliptic curvesen-US
dc.subject53D18en-US
dc.subject14H52en-US
dc.titleA remark about mirror symmetry of elliptic curves and generalized complex geometryen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record