Show simple item record

dc.creatorKalaimathi , M.
dc.creatorBalamurugan, B. J.
dc.date2023-05-16
dc.date.accessioned2023-07-21T14:31:38Z
dc.date.available2023-07-21T14:31:38Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5723
dc.identifier10.22199/issn.0717-6279-5723
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/232391
dc.descriptionLet G = (V,E) be a simple graph with vertex set V and edges set E.  A 1−1 function f : V → N is said to induce a k-Zumkeller graph G if the induced edge function f ∗ : E → N defined by f ∗(xy) = f(x)f(y) satisfies the following conditions: f ∗(xy) is a Zumkeller number for every xy ∈ E. The total distinct Zumkeller numbers on the edges of G is k. In this article, we compute k-Zumkeller graphs through the graph splitting operation on path, cycle and star graphs.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5723/4302
dc.rightsCopyright (c) 2023 M. Kalaimathi , B. J. Balamuruganen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 42 No. 3 (2023); 775-794en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 42 Núm. 3 (2023); 775-794es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2023-03
dc.subjectZumkeller numberen-US
dc.subjectk-Zumkeller graphen-US
dc.subjectsplitting graphen-US
dc.subject05C78en-US
dc.titlek-Zumkeller Graphs through Splitting of Graphsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record