dc.creator | Kalaimathi , M. | |
dc.creator | Balamurugan, B. J. | |
dc.date | 2023-05-16 | |
dc.date.accessioned | 2023-07-21T14:31:38Z | |
dc.date.available | 2023-07-21T14:31:38Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5723 | |
dc.identifier | 10.22199/issn.0717-6279-5723 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/232391 | |
dc.description | Let G = (V,E) be a simple graph with vertex set V and edges set E. A 1−1 function f : V → N is said to induce a k-Zumkeller graph G if the induced edge function f ∗ : E → N defined by f ∗(xy) = f(x)f(y) satisfies the following conditions:
f ∗(xy) is a Zumkeller number for every xy ∈ E.
The total distinct Zumkeller numbers on the edges of G is k.
In this article, we compute k-Zumkeller graphs through the graph splitting operation on path, cycle and star graphs. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/5723/4302 | |
dc.rights | Copyright (c) 2023 M. Kalaimathi , B. J. Balamurugan | en-US |
dc.rights | https://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 42 No. 3 (2023); 775-794 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 42 Núm. 3 (2023); 775-794 | es-ES |
dc.source | 0717-6279 | |
dc.source | 10.22199/issn.0717-6279-2023-03 | |
dc.subject | Zumkeller number | en-US |
dc.subject | k-Zumkeller graph | en-US |
dc.subject | splitting graph | en-US |
dc.subject | 05C78 | en-US |
dc.title | k-Zumkeller Graphs through Splitting of Graphs | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | text | en-US |