Graphs of edge-to-vertex detour number 2
Author
Santhakumaran, A. P.
Full text
https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/445410.22199/issn.0717-6279-4454
Abstract
For two vertices u and v in a graph G = (V,E), the detour distance D(u, v) is the length of a longest u − v path in G. A u − v path of length D(u, v) is called a u − v detour. For subsets A and B of V , the detour distance D(A,B) is defined as D(A,B) = min{D(x, y) : x ∈ A, y ∈ B}. A u − v path of length D(A,B) is called an A-B detour joining the sets A,B ⊆ V where u ∈ A and v ∈ B. A vertex x is said to lie on an A − B detour if x is a vertex of some A−B detour. A set S ⊆ E is called an edge-to-vertex detour set if every vertex of G is incident with an edge of S or lies on a detour joining a pair of edges of S. The edge-to-vertex detour number dn2(G) of G is the minimum order of its edge-to-vertex detour sets and any edge-to-vertex detour set of order dn2(G) is an edge-to-vertex detour basis of G. Graphs G of size q for which dn2(G) = 2 are characterized.
Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
Alicia Salomone, Lorena Amaro y Ángela Pérez (eds.). Caminos y desvíos: lecturas críticas sobre género y escritura en América Latina
Marambio de la Fuente, Matías. Revista Chilena de Literatura; Núm. 80 (2011): Noviembre -
Edge-to-vertex m-detour monophonic number of a graph.
Santhakumaran, A. P.; Titus, P.; Ganesamoorthy, K.. Proyecciones. Journal of Mathematics; Vol 37 No 3 (2018); 415-428 -
Upper Edge Detour Monophonic Number of a Graph
Titus, P.; Ganesamoorthy, K.. Proyecciones. Journal of Mathematics; Vol 33 No 2 (2014); 175-187