dc.creator | Allahverdiev, Bilender | |
dc.creator | Tuna, Hüseyin | |
dc.date | 2021-04-19 | |
dc.date.accessioned | 2023-09-22T12:43:10Z | |
dc.date.available | 2023-09-22T12:43:10Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4842 | |
dc.identifier | 10.22199/issn.0717-6279-4842 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/234446 | |
dc.description | In this paper, we study some spectral properties of the one-dimensional Hahn-Dirac boundary-value problem, such as formally self-adjointness, the case that the eigenvalues are real, orthogonality of eigenfunctions, Green s function, the existence of a countable sequence of eigenvalues, eigenfunctions forming an orthonormal basis of L2w,q ((w0. a): E). | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4842/3727 | |
dc.rights | Copyright (c) 2021 Bilender Allahverdiev, Hüseyin Tuna | en-US |
dc.rights | http://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 40 No. 6 (2021); 1547-1567 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 40 Núm. 6 (2021); 1547-1567 | es-ES |
dc.source | 0717-6279 | |
dc.source | 10.22199/issn.0717-6279-2021-06 | |
dc.subject | Hahn-Dirac system | en-US |
dc.subject | Self-adjoint operator | en-US |
dc.subject | Eigenvalues and eigenfunctions | en-US |
dc.subject | Green’s matrix | en-US |
dc.subject | Eigenfunction expansion | en-US |
dc.subject | 39A13 | en-US |
dc.subject | 39A70 | en-US |
dc.subject | 33D15 | en-US |
dc.subject | 34B27 | en-US |
dc.subject | 34L10 | en-US |
dc.subject | 34L40 | en-US |
dc.subject | 47A10 | en-US |
dc.title | Spectral analysis of Hahn-Dirac system | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | text | en-US |