Show simple item record

dc.creatorAlfaro, Jaime H.
dc.creatorSoto, Ricardo L.
dc.date2023-09-13
dc.date.accessioned2023-09-22T12:43:16Z
dc.date.available2023-09-22T12:43:16Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/6058
dc.identifier10.22199/issn.0717-6279-6058
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/234466
dc.descriptionA list Λ = {λ1, λ2,..., λn} of complex numbers is said to be realizable if it is the spectrum of a nonnegative matrix. Λ is said to be universally realizable (UR) if it is realizable for each possible Jordan canonical form allowed by Λ. In this paper, using companion matrices and applying a procedure by Šmigoc, we provide sufficient conditions for the universal realizability of left half-plane spectra, that is, spectra Λ = {λ1,...,λn} with λ1 > 0, Re λi ≤ 0, i = 2, . . . , n. It is also shown how the effect of adding a negative real number to a not UR left half-plane list of complex numbers, makes the new list UR, and a family of left half-plane lists that are UR is characterized.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/6058/4376
dc.rightsCopyright (c) 2023 Jaime H. Alfaro, Ricardo L. Sotoen-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 42 No. 5 (2023); 1373-1390en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 42 Núm. 5 (2023); 1373-1390es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2023-05
dc.subjectnonnegative matrixen-US
dc.subjectcompanion matrixen-US
dc.subjectuniversal realizabilityen-US
dc.subjectŠmigoc’s glueen-US
dc.subject15A18en-US
dc.subject15A20en-US
dc.subject15A29en-US
dc.titleOn universal realizability in the left half-planeen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record