• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item

Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues

Author
Eloe, Paul W.

Neugebauer, Jeffrey T.

Full text
https://cubo.ufro.cl/ojs/index.php/cubo/article/view/3446
10.56754/0719-0646.2502.251
Abstract
It has been shown that, under suitable hypotheses, boundary value problems of the form, \(Ly+\lambda y=f,\) \(BC y =0\) where \(L\) is a linear ordinary or partial differential operator and \(BC\) denotes a linear boundary operator, then there exists \(\Lambda >0\) such that \(f\ge 0\) implies \(\lambda y \ge 0\) for \(\lambda\in [-\Lambda ,\Lambda ]\setminus\{0\},\) where \(y\) is the unique solution of \(Ly+\lambda y=f,\) \(BC y =0\). So, the boundary value problem satisfies a maximum principle for \(\lambda\in [-\Lambda ,0)\) and the boundary value problem satisfies an anti-maximum principle for \(\lambda\in (0, \Lambda ]\). In an abstract result, we shall provide suitable hypotheses such that boundary value problems of the form, \(D_{0}^{\alpha}y+\beta D_{0}^{\alpha -1}y=f,\) \(BC y =0\) where \(D_{0}^{\alpha}\) is a Riemann-Liouville fractional differentiable operator of order \(\alpha\), \(1<\alpha \le 2\), and \(BC\) denotes a linear boundary operator, then there exists \(\mathcal{B} >0\) such that \(f\ge 0\) implies \(\beta D_{0}^{\alpha -1}y \ge 0\) for \(\beta \in [-\mathcal{B} ,\mathcal{B} ]\setminus\{0\},\) where \(y\) is the unique solution of \(D_{0}^{\alpha}y+\beta D_{0}^{\alpha -1}y =f,\) \(BC y =0\). Two examples are provided in which the hypotheses of the abstract theorem are satisfied to obtain the sign property of \(\beta D_{0}^{\alpha -1}y.\) The boundary conditions are chosen so that with further analysis a sign property of \(\beta y\) is also obtained. One application of monotone methods is developed to illustrate the utility of the abstract result.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB