Show simple item record

dc.creatorEloe, Paul W.
dc.creatorNeugebauer, Jeffrey T.
dc.date2023-08-07
dc.date.accessioned2023-12-19T18:55:51Z
dc.date.available2023-12-19T18:55:51Z
dc.identifierhttps://cubo.ufro.cl/ojs/index.php/cubo/article/view/3446
dc.identifier10.56754/0719-0646.2502.251
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/239188
dc.descriptionIt has been shown that, under suitable hypotheses, boundary value problems of the form, \(Ly+\lambda y=f,\) \(BC y =0\) where \(L\) is a linear ordinary or partial differential operator and \(BC\) denotes a linear boundary operator, then there exists \(\Lambda >0\) such that \(f\ge 0\) implies \(\lambda y \ge 0\) for \(\lambda\in [-\Lambda ,\Lambda ]\setminus\{0\},\) where \(y\) is the unique solution of \(Ly+\lambda y=f,\) \(BC y =0\). So, the boundary value problem satisfies a maximum principle for \(\lambda\in [-\Lambda ,0)\) and the boundary value problem satisfies an anti-maximum principle for \(\lambda\in (0, \Lambda ]\). In an abstract result, we shall provide suitable hypotheses such that boundary value problems of the form, \(D_{0}^{\alpha}y+\beta D_{0}^{\alpha -1}y=f,\) \(BC y =0\) where \(D_{0}^{\alpha}\) is a Riemann-Liouville fractional differentiable operator of order \(\alpha\), \(1<\alpha \le 2\), and \(BC\) denotes a linear boundary operator, then there exists \(\mathcal{B} >0\) such that \(f\ge 0\) implies \(\beta D_{0}^{\alpha -1}y \ge 0\) for \(\beta \in [-\mathcal{B} ,\mathcal{B} ]\setminus\{0\},\) where \(y\) is the unique solution of \(D_{0}^{\alpha}y+\beta D_{0}^{\alpha -1}y =f,\) \(BC y =0\). Two examples are provided in which the hypotheses of the abstract theorem are satisfied to obtain the sign property of \(\beta D_{0}^{\alpha -1}y.\) The boundary conditions are chosen so that with further analysis a sign property of \(\beta y\) is also obtained. One application of monotone methods is developed to illustrate the utility of the abstract result.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://cubo.ufro.cl/ojs/index.php/cubo/article/view/3446/2302
dc.rightsCopyright (c) 2023 P. W. Eloe et al.en-US
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 25 No. 2 (2023); 251–272en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 25 No. 2 (2023); 251–272es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectMaximum principleen-US
dc.subjectanti-maximum principleen-US
dc.subjectRiemann-Liouville fractional differential equationen-US
dc.subjectboundary value problemen-US
dc.subjectmonotone methodsen-US
dc.subjectupper and lower solutionen-US
dc.subject34B08en-US
dc.subject34B18en-US
dc.subject34B27en-US
dc.subject34L15en-US
dc.titleMaximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvaluesen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record