dc.creator | Ibrahim, Muhammad | |
dc.creator | Khan, S. | |
dc.creator | Asim, Muhammad Ahsan | |
dc.creator | Waseem , Muhammad | |
dc.date | 2021-07-26 | |
dc.date.accessioned | 2024-08-05T20:02:39Z | |
dc.date.available | 2024-08-05T20:02:39Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3715 | |
dc.identifier | 10.22199/issn.0717-6279-3715 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/243946 | |
dc.description | Let G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) ≠wt(v); and every two distinct edges u1u2 and v1v2 in E(G) satisfy wt(u1u2) ≠ wt(v1v2); where wt(u) = ψ (u) + ∑uv∊E(G) ψ(uv) and wt(u1u2) = ψ(u1) + ψ(u1u2) + ψ(u2): The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G): In this paper, we determine the exact value of the total irregularity strength of cubic graphs. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3715/3852 | |
dc.rights | Copyright (c) 2021 Muhammad Ibrahim, Muhammad Ahsan Asim, S. Khan, Muhammad Waseem | en-US |
dc.rights | http://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 40 No. 4 (2021); 905-918 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 40 Núm. 4 (2021); 905-918 | es-ES |
dc.source | 0717-6279 | |
dc.source | 10.22199/issn.0717-6279-2021-04 | |
dc.subject | Total edge irregularity strength | en-US |
dc.subject | Total vertex irregularity strength | en-US |
dc.subject | Total irregularity strength | en-US |
dc.subject | Plane graph | en-US |
dc.subject | Crossed prism graph | en-US |
dc.subject | Necklace graph | en-US |
dc.subject | Goldberg snark graph | en-US |
dc.subject | 05C78 | en-US |
dc.subject | 90C35 | en-US |
dc.subject | 90C27 | en-US |
dc.title | Total irregularity strength of some cubic graphs | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | text | en-US |