Show simple item record

dc.creatorBokhary, Syed Ahtshma Ul Haq
dc.creatorImran, Muhammad
dc.creatorAli, Usman
dc.date2021-06-23
dc.date.accessioned2024-08-05T20:02:39Z
dc.date.available2024-08-05T20:02:39Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3959
dc.identifier10.22199/issn.0717-6279-3959
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/243947
dc.descriptionA vertex (edge) irregular total k-labeling ? of a graph G is a labeling of the vertices and edges of G with labels from the set {1,2,...,k} in such a way that any two different vertices (edges) have distinct weights. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x, whereas the weight of an edge is the sum of label of the edge and the vertices incident to that edge. The minimum k for which the graph G has a vertex (edge) irregular total k-labeling is called the total vertex (edge) irregularity strength of G. In this paper, we are dealing with infinite classes of convex polytopes generated by prism graph and antiprism graph. We have determined the exact value of their total vertex irregularity strength and total edge irregularity strength.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3959/3902
dc.rightsCopyright (c) 2021 Syed Ahtshma Ul Haq Bokhary, Muhammad Imran, Usman Alien-US
dc.rightshttp://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 40 No. 5 (2021); 1267-1277en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 40 Núm. 5 (2021); 1267-1277es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2021-05
dc.subjectIrregular assignmenten-US
dc.subjectVertex irregular total k-labelingen-US
dc.subjectIrregularity strengthen-US
dc.subjectConvex polytopesen-US
dc.subject05C78en-US
dc.titleOn the total irregularity strength of convex polytope graphsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record