Quality managment and labor productivity of formal companies in Perú: A non – experimental design and causal machine learning techniques
Author
Tello, Mario
Tello, Daniel
Abstract
This paper evaluates the impacts of quality management tools on the labor productivity of companies in Peru for the period 2014-2019 based on causal Machine Learning (ML) techniques (MLC), which reduce or eliminate three potential problems: the endogeneity of the variables of interest, the existence of confusing variables (confounding) and overfitting due to the introduction of many control variables. Using the National Survey of Companies (INEI-ENE 2023), the evaluation indicates that quality control tools affect the productivity of formal companies, particularly large and medium-sized companies. Este trabajo evalúa los impactos de las herramientas de gestión de calidad sobre la productividad laboral de las empresas del Perú para el periodo 2014-2019 basados en técnicas de Machine Learning (ML, en inglés) causal (MLC), las cuales reducen o eliminan tres potenciales problemas: la endogeneidad de las variables de interés, la existencia de variables confusas (confounding) y el
sobre ajuste (overfitting) por la introducción de un número grande de variables de control. Usando la Encuesta Nacional de Empresas (INEI-ENE 2023), la evaluación señala que las herramientas de control de calidad inciden en la productividad de las empresas formales, particularmente de las empresas grandes y medianas.