dc.creator | Carmina, K. A. | es |
dc.creator | Sebastian, Reena | es |
dc.date | 2013-05-01 | |
dc.date.accessioned | 2024-11-04T11:29:09Z | |
dc.date.available | 2024-11-04T11:29:09Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1120 | |
dc.identifier | 10.4067/S0716-09172013000200002 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/245710 | |
dc.description | A (p, q)-graph G is said to be square sum, if there exists a bijection f : V(G) → {0,1, 2,...,p — 1} such that the induced function f * : E(G) → N given by f * (uv) = (f (u))2 + (f (v))2 for every uv ∈ E(G) is injective. In this paper we initiate a study on square sum graphs and prove that trees, unicyclic graphs, mCn, m > 1, cycle with a chord, the graph obtained by joining two copies of cycle Cn by a path Pk and the graph defined by path union of k copies of Cn, when the path Pn = P2 are square sum. | es |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | en |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1120/1160 | |
dc.rights | Copyright (c) 2013 Proyecciones. Journal of Mathematics | en |
dc.source | Proyecciones (Antofagasta, On line); Vol. 32 No. 2 (2013); 107-117 | en |
dc.source | Proyecciones. Revista de Matemática; Vol. 32 Núm. 2 (2013); 107-117 | es |
dc.source | 0717-6279 | |
dc.title | On square sum graphs | es |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |