Show simple item record

dc.creatorArgyros, Ioannis K.es
dc.creatorHilout, Saïdes
dc.date2012-01-29
dc.date.accessioned2025-03-31T13:17:52Z
dc.date.available2025-03-31T13:17:52Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1154
dc.identifier10.4067/S0716-09172012000100002
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/250939
dc.descriptionWe use a combination of the center—Lipschitz condition with the Lipschitz condition condition on the Frechet—derivative of the opera­tor involved to provide a semilocal convergence analysis ofthe Gauss-Newton method to a solution ofan equation. Using more precise esti­mates on the distances involved, under weaker hypotheses, and under the same computational cost, we provide an analysis of the Gauss— Newton method with the following advantages over the corresponding results in [8]: larger convergence domain; finer error estimates on the distances involved, and an at least as precise information on the location ofthe solution.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1154/1123
dc.rightsCopyright (c) 2012 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta, On line); Vol. 31 No. 1 (2012); 11-24en
dc.sourceProyecciones. Revista de Matemática; Vol. 31 Núm. 1 (2012); 11-24es
dc.source0717-6279
dc.titleOn the Gauss-Newton Method for Solving Equationses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record