Show simple item record

dc.creatorCastillo, Marianelaes
dc.date2011-12-10
dc.date.accessioned2025-03-31T13:17:52Z
dc.date.available2025-03-31T13:17:52Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1162
dc.identifier10.4067/S0716-09172011000300002
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/250947
dc.descriptionWe prove that for any prime p and any integer k > 2,there exist in the ring Zp of p-adic integers arbitrarily long sequences whose sequence of k-th powers 1) has its k-th difference sequence equal to the constant sequence (k!); and 2) is not a sequence of consecutive k-th powers. This shows that the analogue of Buchi's problem for higher powers has a negative answer over Zp.This result for k = 2 was recently obtained by J. Browkin.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1162/1112
dc.rightsCopyright (c) 2011 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta, On line); Vol. 30 No. 3 (2011); 295-302en
dc.sourceProyecciones. Revista de Matemática; Vol. 30 Núm. 3 (2011); 295-302es
dc.source0717-6279
dc.titleA note on Büchi's problem for p-adic numberses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record