| dc.creator | Castillo, Marianela | es |
| dc.date | 2011-12-10 | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1162 | |
| dc.identifier | 10.4067/S0716-09172011000300002 | |
| dc.description | We prove that for any prime p and any integer k > 2,there exist in the ring Zp of p-adic integers arbitrarily long sequences whose sequence of k-th powers 1) has its k-th difference sequence equal to the constant sequence (k!); and 2) is not a sequence of consecutive k-th powers. This shows that the analogue of Buchi's problem for higher powers has a negative answer over Zp.This result for k = 2 was recently obtained by J. Browkin. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1162/1112 | |
| dc.rights | Copyright (c) 2011 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 30 No. 3 (2011); 295-302 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 30 Núm. 3 (2011); 295-302 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2011 | |
| dc.title | A note on Büchi's problem for p-adic numbers | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |