Show simple item record

dc.creatorCastro, Nelsones
dc.creatorMendoza, Ramónes
dc.creatorRojas, Jacqueline F.es
dc.date2011-12-10
dc.date.accessioned2025-03-31T13:17:53Z
dc.date.available2025-03-31T13:17:53Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1170
dc.identifier10.4067/S0716-09172011000300010
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/250955
dc.descriptionThe translation of the observable, position and momentum, of a given particle in the real line, at a certain time t, from Classical Mechanics, into the operators, position and momentum, in Quantum Mechanics, gives us the inspiration to make a proof of the existence of the Fourier's Inverse Transform, using algebraic relations involving these operators (position and momentum), a few of Linear Algebra and Analysis, without resorting to the classical technics like Fubini's Theorem and Lebesgue's Dominated Convergence Theorem.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1170/1121
dc.rightsCopyright (c) 2011 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta, On line); Vol. 30 No. 3 (2011); 441-457en
dc.sourceProyecciones. Revista de Matemática; Vol. 30 Núm. 3 (2011); 441-457es
dc.source0717-6279
dc.titleA quantum mechanical proof of the fourier inversion formulaes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record