Show simple item record

dc.creatorSoleymani, F.es
dc.creatorHosseinabadi, V.es
dc.date2011-12-09
dc.date.accessioned2025-03-31T13:17:53Z
dc.date.available2025-03-31T13:17:53Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1172
dc.identifier10.4067/S0716-09172011000200002
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/250957
dc.descriptionConstructing of a technique which is both accurate and derivative-free is one of the most important tasks in the field of iterative processes. Hence in this study, convergent iterative techniques are suggested for solving single variable nonlinear equations. Their error equations are given theoretically to show that they have cubic and quartical convergence. Per iteration the novel schemes include three evaluations of the function while they are free from derivative as well. In viewpoint of optimality, the developed quartically class reaches the optimal efficiency index 41/3 ≈ 1.587 based on the Kung-Traub Hypothesis regarding the optimality of multi-point iterations without memory. In the end, the theoretical results are supported by numerical examples to elucidate the accuracy ofthe developed schemes.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1172/1102
dc.rightsCopyright (c) 2011 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta, On line); Vol. 30 No. 2 (2011); 149-161en
dc.sourceProyecciones. Revista de Matemática; Vol. 30 Núm. 2 (2011); 149-161es
dc.source0717-6279
dc.titleA robust cubically and quartically iterative techniques free from derivativees
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record