• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad Alberto Hurtado
  • Journal of Technology Management & Innovation
  • View Item
  •   Home
  • Universidad Alberto Hurtado
  • Journal of Technology Management & Innovation
  • View Item

Startup Success Prediction with PCA-Enhanced Machine Learning Models

Author
Choi, Youngkeun

Full text
https://www.jotmi.org/index.php/GT/article/view/4617
10.4067/S0718-27242024000400077
Abstract
This study evaluates the effectiveness of various machine learning algorithms in predicting startup success and explores the performance improvement achieved by applying Principal Component Analysis (PCA) to the models. By analyzing logistic regression, support vector classifier (SVC), XGBoost, and other supervised learning algorithms, the study demonstrates that PCA enhances the generalization performance of most models. Notably, Support Vector Classifier (SVC) showed an accuracy of 0.78, precision of 0.83, recall of 0.73, and F1 score of 0.74 without PCA, but performance significantly improved with PCA, recording an accuracy of 0.90, precision of 0.90, recall of 0.89, and F1 score of 0.89. Academically, this research contributes to the literature by examining how dimension reduction can boost the accuracy of machine learning models for startup success prediction, providing a valuable intersection of machine learning and venture capital studies. Practically, it offers investors AI-driven decision- making tools to enhance the precision of investment evaluations and better identify startups with high growth potential. Despite its contributions, this study is limited by the specific dataset used, suggesting that future research could explore various datasets and alternative dimension reduction techniques. Future studies could also assess real-time data application and incorporate deep learning models to improve predictive performance in startup success evaluation.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB