| dc.creator | Hejazian, Shirin | es |
| dc.creator | Mirzavaziri, Madjid | es |
| dc.creator | Tehrani, Elahe Omidvar | es |
| dc.date | 2011-01-07 | |
| dc.date.accessioned | 2025-10-06T15:04:44Z | |
| dc.date.available | 2025-10-06T15:04:44Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1202 | |
| dc.identifier | 10.4067/S0716-09172010000200003 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255372 | |
| dc.description | Let A be an algebra. A sequence {dn} of linear mappings on A is called a higher derivation if for each a, b ∈ A and each nonnegative integer n. Jewell [Pacific J. Math. 68 (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that ker(d0) ⊆ ker(dm), for all m = 1. In this paper, under a different approach using C*-algebraic tools, we prove that each higher derivation {dn} on a C*-algebra A is automatically continuous, provided that it is normal, i. e. d0 is the identity mapping on A. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1202/pdf | |
| dc.rights | Copyright (c) 2010 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 29 No. 2 (2010); 101-108 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 29 Núm. 2 (2010); 101-108 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2010 | |
| dc.title | Jewell theorem for higher derivations on C*-algebras | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |