Show simple item record

dc.creatorHejazian, Shirines
dc.creatorMirzavaziri, Madjides
dc.creatorTehrani, Elahe Omidvares
dc.date2011-01-07
dc.date.accessioned2025-10-06T15:04:44Z
dc.date.available2025-10-06T15:04:44Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1202
dc.identifier10.4067/S0716-09172010000200003
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255372
dc.descriptionLet A be an algebra. A sequence {dn} of linear mappings on A is called a higher derivation if  for each a, b ∈ A and each nonnegative integer n. Jewell [Pacific J. Math. 68 (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that ker(d0) ⊆ ker(dm), for all m = 1. In this paper, under a different approach using C*-algebraic tools, we prove that each higher derivation {dn} on a C*-algebra A is automatically continuous, provided that it is normal, i. e. d0 is the identity mapping on A.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1202/pdf
dc.rightsCopyright (c) 2010 Proyecciones. Journal of Mathematicsen
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.sourceProyecciones (Antofagasta); Vol. 29 No. 2 (2010); 101-108en
dc.sourceProyecciones. Revista de Matemática; Vol. 29 Núm. 2 (2010); 101-108es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2010
dc.titleJewell theorem for higher derivations on C*-algebrases
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record