| dc.creator | Krishnakumari, B. | es |
| dc.creator | Venkatakrishnan, Y. B. | es |
| dc.date | 2017-03-23 | |
| dc.date.accessioned | 2025-10-06T15:04:45Z | |
| dc.date.available | 2025-10-06T15:04:45Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1216 | |
| dc.identifier | 10.4067/S0716-09172016000300002 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255386 | |
| dc.description | Let G = (V, E) be a simple graph. A set is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set if induced sub graph (V \ D) is a tree. The domination (complementary tree domination, respectively) number of G is the minimum cardinality of a dominating (complementary tree dominating, respectively) set of G. We characterize all unicyclic graphs with equal domination and complementary tree domination numbers. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1216/929 | |
| dc.rights | Copyright (c) 2016 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 35 No. 3 (2016); 245-249 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 35 Núm. 3 (2016); 245-249 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2016 | |
| dc.title | Unicyclic graphs with equal domination and complementary tree domination numbers | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |