| dc.creator | Jeyanthi, P. | es |
| dc.creator | Maheswari, A. | es |
| dc.creator | Pandiaraj, P. | es |
| dc.date | 2017-03-23 | |
| dc.date.accessioned | 2025-10-06T15:04:52Z | |
| dc.date.available | 2025-10-06T15:04:52Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1219 | |
| dc.identifier | 10.4067/S0716-09172016000300005 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255389 | |
| dc.description | A graph G is said to be one modulo three mean graph if there is an injective function φ from the vertex set of G to the set {a|0 ≤ a ≤ 3q— 2 and either a ≡ 0(mod 3) or a ≡ 1(mod 3)} where q is the number of edges G and φ induces a bijection φ* from the edge set of G to {a|1 ≤ a ≤ 3q — 2 and either a ≡ 1(mod 3)} given byand the function φ is called one modulo three mean labeling of G. In this paper, we prove that the graphs T ° Kn, T ô K1,n, T ô Pn and T ô 2Pn are one modulo three mean graphs. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1219/932 | |
| dc.rights | Copyright (c) 2016 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 35 No. 3 (2016); 277-289 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 35 Núm. 3 (2016); 277-289 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2016 | |
| dc.title | One modulo three mean labeling of transformed trees | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |