Show simple item record

dc.creatorOudghiri, Mourades
dc.creatorSouilah, Khalides
dc.date2017-03-23
dc.date.accessioned2025-10-06T15:04:52Z
dc.date.available2025-10-06T15:04:52Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1221
dc.identifier10.4067/S0716-09172016000300007
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255391
dc.descriptionLet B(H) be the algebra of all bounded linear operators on an infinite-dimensional Hilbert space H. We prove that if Φ is a surjective map on B(H) such that Φ(I) = I + Φ(0) and for every pair T, S ∈ B(H), the operator T — S is singular algebraic if and only if Φ(T) — Φ(S) is singular algebraic, then Φ is either of the form Φ(T) = ATA-1 + Φ(0) or the form Φ(T) = AT*A-1 + Φ(0) where A : H → H is an invertible bounded linear, or conjugate linear, operator.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1221/934
dc.rightsCopyright (c) 2016 Proyecciones. Journal of Mathematicsen
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.sourceProyecciones (Antofagasta); Vol. 35 No. 3 (2016); 301-316en
dc.sourceProyecciones. Revista de Matemática; Vol. 35 Núm. 3 (2016); 301-316es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2016
dc.titleNon-linear maps preserving singular algebraic operatorses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record