Show simple item record

dc.creatorMohammadpouri, Akrames
dc.creatorPashaie, Firoozes
dc.date2017-03-23
dc.date.accessioned2025-10-06T15:04:53Z
dc.date.available2025-10-06T15:04:53Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1231
dc.identifier10.4067/S0716-09172016000100001
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255401
dc.descriptionIn this paper, we study isometrically immersed hypersurfaces of the Euclidean space En+1 satisfying the condition LrH r+i = λHr+1for an integer r ( 0 ≤ r ≤ n — 1), where Hr+i is the (r + 1)th mean curvature vector field on the hypersurface, Lr is the linearized operator of the first variation of the (r + 1) th mean curvature of hypersurface arising from its normal variations. Having assumed that on a hypersurface x : Mn → En+1, the vector field Hr+i be an eigenvector of the operator Lr with a constant real eigenvalue λ, we show that, Mn has to be an Lr-biharmonic, Lr-1-type, or Lr-null-2-type hypersurface. Furthermore, we study the above condition on a well-known family of hypersurfaces, named the weakly convex hypersurfaces (i.e. on which principal curvatures are nonnegative). We prove that, any weakly convex Euclidean hypersurface satisfying the condition Lr Hr+i = λ Hr+i for an integer r ( 0 ≤ r ≤ n — 1), has constant mean curvature of order (r + 1). As an interesting result, we have that, the Lr-biharmonicity condition on the weakly convex Euclidean hypersurfaces implies the r-minimality.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1231/944
dc.rightsCopyright (c) 2016 Proyecciones. Journal of Mathematicsen
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.sourceProyecciones (Antofagasta); Vol. 35 No. 1 (2016); 1-10en
dc.sourceProyecciones. Revista de Matemática; Vol. 35 Núm. 1 (2016); 1-10es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2016
dc.titleOn the classification of hypersurfaces in Euclidean spaces satisfying LrHr+1 = AHr+1es
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record