Show simple item record

dc.creatorSanthakumaran, A. P.es
dc.creatorMahendran, M.es
dc.date2017-03-23
dc.date.accessioned2025-10-06T15:04:53Z
dc.date.available2025-10-06T15:04:53Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1235
dc.identifier10.4067/S0716-09172016000100005
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255405
dc.descriptionFor a connected graph G of order n ≥ 2, and for any mínimum open monophonic set S of G, a subset T of S is called a forcing subset for S if S is the unique minimum open monophonic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing open monophonic number of S, de-noted by fom(S), is the cardinality of a minimum forcing subset of S. The forcing open monophonic number of G, denoted by fom(G), is fom(G) = min(fom(S)), where the minimum is taken over all minimum open monophonic sets in G. The forcing open monophonic numbers of certain standard graphs are determined. It is proved that for every pair a, b of integers with 0 ≤ a ≤ b — 4 and b ≥ 5, there exists a connected graph G such that fom(G) = a and om(G) = b. It is analyzed how the addition of a pendant edge to certain standard graphs affects the forcing open monophonic number.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1235/948
dc.rightsCopyright (c) 2016 Proyecciones. Journal of Mathematicsen
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.sourceProyecciones (Antofagasta); Vol. 35 No. 1 (2016); 67-83en
dc.sourceProyecciones. Revista de Matemática; Vol. 35 Núm. 1 (2016); 67-83es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2016
dc.titleThe forcing open monophonic number of a graphes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record