| dc.creator | Lourdusamy, A. | es |
| dc.creator | Patrick, F. | es |
| dc.date | 2017-03-23 | |
| dc.date.accessioned | 2025-10-06T15:04:53Z | |
| dc.date.available | 2025-10-06T15:04:53Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1238 | |
| dc.identifier | 10.4067/S0716-09172016000100008 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255408 | |
| dc.description | A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V (G) to {1, 2, ..., |V (G)|} such that an edge uv is assigned the label 1 if 2 divides f (u) + f (v) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that path, comb, star, complete bipartite, K2+ mK1, bistar, jewel, crown, flower, gear, subdivision of the star, K1,3* K1,n and square graph of Bn,n are sum divisor cordial graphs. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1238/951 | |
| dc.rights | Copyright (c) 2016 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 35 No. 1 (2016); 119-136 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 35 Núm. 1 (2016); 119-136 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2016 | |
| dc.title | Sum divisor cordial graphs | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |