Show simple item record

dc.creatorAbreu, Naires
dc.creatorLenes, Eberes
dc.creatorRojo, Óscares
dc.date2025-04-17
dc.date.accessioned2025-10-06T15:04:54Z
dc.date.available2025-10-06T15:04:54Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1244
dc.identifier10.4067/S0716-09172015000400006
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255414
dc.descriptionA bug Bugp,r1r2 is a graph obtained from a complete graph Kp by deleting an edge uv and attaching the paths Priand Pr2 by one of their end vertices at u and v, respectively. Let Q(G) be the signless Laplacian matrix of a graph G and q1(G) be the spectral radius of Q(G). It is known that the bug maximizes q1(G) among all graphs G of order n and diameter d. For a bug B of order n and diameter d, n - d is an eigenvalue of Q(B) with multiplicity n - d - 1. In this paper, we prove that remainder d +1 eigenvalues of Q(B), among them q1(B), can be computed as the eigenvalues of a symmetric tridiagonal matrix of order d +1. Finally, we show that q1(B0) can be computed as the largest eigenvalue of a symmetric tridiagonal matrix of order whenever d is even.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1244/957
dc.rightsCopyright (c) 2015 Proyecciones. Journal of Mathematicsen
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.sourceProyecciones (Antofagasta); Vol. 34 No. 4 (2015); 379-390en
dc.sourceProyecciones. Revista de Matemática; Vol. 34 Núm. 4 (2015); 379-390es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2015
dc.titleComputing the maximal signless Laplacian index among graphs of prescribed order and diameteres
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record