| dc.creator | Ronglu, Li | es |
| dc.creator | Swartz, Charles | es |
| dc.date | 2025-04-17 | |
| dc.date.accessioned | 2025-10-06T15:04:54Z | |
| dc.date.available | 2025-10-06T15:04:54Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1245 | |
| dc.identifier | 10.4067/S0716-09172015000400007 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255415 | |
| dc.description | Let E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of Fi and let τFi(Ei) = τi be the topology on Ei of uniform convergence on the members of Fi. Let J be a family of mappings from Ei to E2. We consider conditions which guarantee that J is τ1-τ2 equicontinuous. We then apply the results to obtain versions of the Banach-Steinhaus Theorem for both abstract triples and for linear operators between locally convex spaces. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1245/958 | |
| dc.rights | Copyright (c) 2015 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 34 No. 4 (2015); 391-399 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 34 Núm. 4 (2015); 391-399 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2015 | |
| dc.title | The Banach-Steinhaus Theorem in Abstract Duality Pairs | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |