Show simple item record

dc.creatorRonglu, Lies
dc.creatorSwartz, Charleses
dc.date2025-04-17
dc.date.accessioned2025-10-06T15:04:54Z
dc.date.available2025-10-06T15:04:54Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1245
dc.identifier10.4067/S0716-09172015000400007
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255415
dc.descriptionLet E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of    Fi    and let    τFi(Ei)    =    τi be    the    topology on    Ei   of uniform convergence on the members of Fi. Let J be a family of mappings from Ei to E2. We consider conditions which guarantee that J is τ1-τ2 equicontinuous. We then apply the results to obtain versions of the Banach-Steinhaus Theorem for both abstract triples and for linear operators between locally convex spaces.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1245/958
dc.rightsCopyright (c) 2015 Proyecciones. Journal of Mathematicsen
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.sourceProyecciones (Antofagasta); Vol. 34 No. 4 (2015); 391-399en
dc.sourceProyecciones. Revista de Matemática; Vol. 34 Núm. 4 (2015); 391-399es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2015
dc.titleThe Banach-Steinhaus Theorem in Abstract Duality Pairses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record