Show simple item record

dc.creatorCho, Min Hyunges
dc.creatorRonglu, Lies
dc.creatorSwartz, Charleses
dc.date2017-03-23
dc.date.accessioned2025-10-06T15:04:55Z
dc.date.available2025-10-06T15:04:55Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1274
dc.identifier10.4067/S0716-09172014000400007
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255444
dc.descriptionLet E, F be sets, G an Abelian topological group and b : ExF — G. Then (E, F, G) is called an abstract triple. Let w(F, E) be the weakest toplogy on F such that the maps {b(x, ·): x G E} from F into G are continuous. A subset B C F is w(F,E) sequentially conditionally compact if every sequence {yk} C B has a subsequence {ynk } such that limj; b(x, ynk) exists for every x G E. It is shown that if a formal series in E is subseries convergent in the sense that for every subsequence {xnj} there is an element x G E such that Xj=! b(xnj ,y) = b(x,y) for every y G F ,then the series Xj=! b(xnj ,y) converge uniformly for y belonging to w(F, E) sequentially conditionally compact subsets ofF. This result is used to establish Orlicz-Pettis Theorems in locall convex and function spaces. Applications are also given to Uniform Boundedness Principles and continuity results for bilinear mappings.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1274/986
dc.rightsCopyright (c) 2014 Proyecciones. Journal of Mathematicsen
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.sourceProyecciones (Antofagasta); Vol. 33 No. 4 (2014); 447-470en
dc.sourceProyecciones. Revista de Matemática; Vol. 33 Núm. 4 (2014); 447-470es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2014
dc.titleSubseries convergence in abstract duality pairses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record