| dc.creator | Cho, Min Hyung | es |
| dc.creator | Ronglu, Li | es |
| dc.creator | Swartz, Charles | es |
| dc.date | 2017-03-23 | |
| dc.date.accessioned | 2025-10-06T15:04:55Z | |
| dc.date.available | 2025-10-06T15:04:55Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1274 | |
| dc.identifier | 10.4067/S0716-09172014000400007 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255444 | |
| dc.description | Let E, F be sets, G an Abelian topological group and b : ExF — G. Then (E, F, G) is called an abstract triple. Let w(F, E) be the weakest toplogy on F such that the maps {b(x, ·): x G E} from F into G are continuous. A subset B C F is w(F,E) sequentially conditionally compact if every sequence {yk} C B has a subsequence {ynk } such that limj; b(x, ynk) exists for every x G E. It is shown that if a formal series in E is subseries convergent in the sense that for every subsequence {xnj} there is an element x G E such that Xj=! b(xnj ,y) = b(x,y) for every y G F ,then the series Xj=! b(xnj ,y) converge uniformly for y belonging to w(F, E) sequentially conditionally compact subsets ofF. This result is used to establish Orlicz-Pettis Theorems in locall convex and function spaces. Applications are also given to Uniform Boundedness Principles and continuity results for bilinear mappings. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1274/986 | |
| dc.rights | Copyright (c) 2014 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 33 No. 4 (2014); 447-470 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 33 Núm. 4 (2014); 447-470 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2014 | |
| dc.title | Subseries convergence in abstract duality pairs | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |