| dc.creator | Titus, P. | es |
| dc.creator | Ganesamoorthy, K. | es |
| dc.date | 2017-03-23 | |
| dc.date.accessioned | 2025-10-06T15:04:56Z | |
| dc.date.available | 2025-10-06T15:04:56Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1286 | |
| dc.identifier | 10.4067/S0716-09172014000200004 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255456 | |
| dc.description | For a connected graph G of order at least two, a path P is called a monophonic path if it is a chordless path. A longest x — y monophonic path is called an x — y detour monophonic path. A set S of vertices of G is an edge detour monophonic set of G if every edge of G lies on a detour monophonic path joining some pair of vertices in S.The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G).An edge detour monophonic set S ofG is called a minimal edge detour mono-phonic set ifno proper subset ofS is an edge detour monophonic set of G. The upper edge detour monophonic number of G, denoted by edm+(G),is defined as the maximum cardinality of a minimal edge detour monophonic set ofG. We determine bounds for it and characterize graphs which realize these bounds. For any three positive integers b, c and n with 2 ≤ b ≤ n ≤ c, there is a connected graph G with edm(G) = b, edm+(G) = c and a minimal edge detour monophonic set of cardinality n. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1286/998 | |
| dc.rights | Copyright (c) 2014 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 33 No. 2 (2014); 175-187 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 33 Núm. 2 (2014); 175-187 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2014 | |
| dc.title | Upper Edge Detour Monophonic Number of a Graph | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |