Strongly Bounded Partial Sums
Author
Swartz, Charles
Full text
https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/128810.4067/S0716-09172014000200006
Abstract
If λ is a scalar sequence space, a series P Zj in a topological vector space Z is λ multiplier convergent in Z if the series P ∞J =1 tj Zj converges in Z for every t = {tj} ∈ λ-If λ satisfies appropriate conditions, a series in a locally convex space X which is λ multiplier convergent in the weak topology is λ multiplier convergent in the original topology ofthe space (the Orlicz-Pettis Theorem) but may fail to be λ multiplier convergent in the strong topology of the space. However, we show under apprpriate conditions on the multiplier space λ that the series will have strongly bounded partial sums.