| dc.creator | Michael Raj, L. Benedict | es |
| dc.creator | Ayyaswamy, S. K. | es |
| dc.date | 2017-03-23 | |
| dc.date.accessioned | 2025-10-06T15:04:56Z | |
| dc.date.available | 2025-10-06T15:04:56Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1291 | |
| dc.identifier | 10.4067/S0716-09172014000100002 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255461 | |
| dc.description | Let G = (V, E) be a graph of order n = |V| and chromatic number (G) A dominating set D of G is called a dominating chromatic partition-cover or dcc-set, if it intersects every color class of every X-coloring of G. The minimum cardinality of a dcc-set is called the dominating chromatic partition-covering number, denoted dcc(G). The dcc-saturation number equals the minimum integer i such that every vertex ν ∈ V is contained in a dcc-set of cardinality k.This number is denoted by dccs(G) In this paper we study a few properties ofthese two invariants dcc(G) and dccs(G). | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1291/1003 | |
| dc.rights | Copyright (c) 2014 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 33 No. 1 (2014); 13-23 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 33 Núm. 1 (2014); 13-23 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2014 | |
| dc.title | Some characterization theorems on dominating chromatic partition-covering number of graphs | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |