Show simple item record

dc.creatorMichael Raj, L. Benedictes
dc.creatorAyyaswamy, S. K.es
dc.date2017-03-23
dc.date.accessioned2025-10-06T15:04:56Z
dc.date.available2025-10-06T15:04:56Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1291
dc.identifier10.4067/S0716-09172014000100002
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255461
dc.descriptionLet G = (V, E) be a graph of order n = |V| and chromatic number (G) A dominating set D of G is called a dominating chromatic partition-cover or dcc-set, if it intersects every color class of every X-coloring of G. The minimum cardinality of a dcc-set is called the dominating chromatic partition-covering number, denoted dcc(G). The dcc-saturation number equals the minimum integer i such that every vertex ν ∈ V is contained in a dcc-set of cardinality k.This number is denoted by dccs(G) In this paper we study a few properties ofthese two invariants dcc(G) and dccs(G).es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1291/1003
dc.rightsCopyright (c) 2014 Proyecciones. Journal of Mathematicsen
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.sourceProyecciones (Antofagasta); Vol. 33 No. 1 (2014); 13-23en
dc.sourceProyecciones. Revista de Matemática; Vol. 33 Núm. 1 (2014); 13-23es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2014
dc.titleSome characterization theorems on dominating chromatic partition-covering number of graphses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record