| dc.creator | Arenas, Manuel | es |
| dc.creator | Labra, Alicia | es |
| dc.date | 2017-03-23 | |
| dc.date.accessioned | 2025-10-06T15:04:56Z | |
| dc.date.available | 2025-10-06T15:04:56Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1298 | |
| dc.identifier | 10.4067/S0716-09172014000100009 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255468 | |
| dc.description | It is known that commutative algebras satisfying the identity of degree four ((yx)x)x + γ((xx)x) = 0, with γ in the field and γ ≠ —1 are locally nilpotent. In this paper we study the birrepresentations of an algebra A that belongs to a variety ν of locally nilpotent algebras. We prove that if the split null extension of a birrepresentation of an algebra A ∈ ν by a vector space M is locally nilpotent, then it is trivial or reducible. As corollaries we get that if A is finitely generated, then every birrepresentation is trivial or reducible and that every finite-dimensional birrepresentation is equivalent to a birrepre-sentation consisting of strictly upper triangular matrices. We also prove that the multiplicative universal envelope of a finitely generated algebra in V is nilpotent, therefore it is finite-dimensional. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1298/1010 | |
| dc.rights | Copyright (c) 2014 Proyecciones. Journal of Mathematics | en |
| dc.rights | https://creativecommons.org/licenses/by/4.0 | en |
| dc.source | Proyecciones (Antofagasta); Vol. 33 No. 1 (2014); 123-132 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 33 Núm. 1 (2014); 123-132 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2014 | |
| dc.title | Birrepresentations in a locally nilpotent variety | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |