Show simple item record

dc.creatorSanthakumaran, A. P.es
dc.creatorTitus, P.es
dc.creatorBalakrishnan, P.es
dc.date2013-09-01
dc.date.accessioned2025-10-06T15:04:57Z
dc.date.available2025-10-06T15:04:57Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1308
dc.identifier10.4067/S0716-09172013000300002
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255478
dc.descriptionFor a connected graph G of order n,a set S of vertices is called an edge monophonic set of G if every edge of G lies on a monophonic path joining some pair of vertices in S, and the edge monophonic number me(G) is the minimum cardinality of an edge monophonic set. An edge monophonic set S of G is a connected edge mono-phonic set if the subgraph induced by S is connected, and the connected edge monophonic number mce(G) is the minimum cardinality of a connected edge monophonic set of G. Graphs of order n with connected edge monophonic number 2, 3 or n are characterized. It is proved that there is no non-complete graph G of order n > 3 with me(G) = 3 and mce(G) = 3. It is shown that for integers k,l and n with 4 < k < l < n, there exists a connected graph G of order n such that me(G) = k and mce(G) = l.Also, for integers j,k and l with 4 < j < k < l, there exists a connected graph G such that me(G)= j,mce(G)= k and gce(G) = l,where gce(G) is the connected edge geodetic number ofa graph G.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1308/1020
dc.rightsCopyright (c) 2013 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 32 No. 3 (2013); 215-234en
dc.sourceProyecciones. Revista de Matemática; Vol. 32 Núm. 3 (2013); 215-234es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2013
dc.titleConnected edge monophonic number of a graphes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record