• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad Católica del Norte
  • Proyecciones: Journal of Mathematics
  • View Item
  •   Home
  • Universidad Católica del Norte
  • Proyecciones: Journal of Mathematics
  • View Item

An equivalence in generalized almost-Jordan algebras

Author
Guzzo Jr., Henrique

Labra, Alicia

Full text
https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1325
10.4067/S0716-09172016000400011
Abstract
In this paper we work with the variety of commutative algebras satisfying the identity β((x2y)x — ((yx)x)x) +γ(x3y — ((yx)x)x) = 0, where β, γ are scalars.    They are called generalized almost-Jordanalgebras. We prove that this variety is equivalent to the variety of commutative algebras satisfying (3β + γ)(Gy(x,z,t) — Gx(y,z,t)) + (β + 3γ)(J(x,z,t)y — J(y,z,t)x) = 0, for all x,y,z,t ∈ A, where J(x,y,z) = (xy)z+(yz)x+(zx)y and Gx(y,z,t) = (yz,x,t)+(yt,x,z)+ (zt,x,y). Moreover, we prove that if A is a commutative algebra, then J (x, z, t)y = J (y, z, t)x, for all x, y, z, t ∈ A, if and only if A is a generalized almost-Jordan algebra for β= 1 and γ = —3, that is, A satisfies the identity (x2y)x + 2((yx)x)x — 3x3y = 0 and we study this identity. We also prove that if A is a commutative algebra, then Gy(x,z,t) = Gx(y,z,t), for all x,y,z,t ∈ A, ifand only if A is an almost-Jordan or a Lie Triple algebra.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB