| dc.creator | Sahoo, Prassana K. | es |
| dc.date | 2017-04-06 | |
| dc.date.accessioned | 2025-10-06T15:05:06Z | |
| dc.date.available | 2025-10-06T15:05:06Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1395 | |
| dc.identifier | 10.4067/S0716-09172017000100002 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255520 | |
| dc.description | Let G be a group and C the field of complex numbers. Suppose σ1, σ 2 : G → G are endomorphisms satisfying the condition σi(σi(x)) = x for all x in G and for i = 1, 2. In this paper, we find the central solution f : G → C of the equation f (xy) + f (σi(y)x) =2f (x) + f (y) + f (σ2(y)) for all x,y ∈ G which is a variant of the Drygas functional equation with two involutions. Further, we present a generalization the above functional equation and determine its central solutions. As an application, using the solutions ofthe generalized equation, we determine the solutions f, g, h, k : GxG → C ofthefunc-tional equation f (pr, qs) + g(sp, rq) = 2f (p, q) + h(r, s) + k(s, r) when f satisfies the condition f (pr, qs) = f (rp, sq) for all p, q, r, s ∈ G. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1395/1191 | |
| dc.rights | Copyright (c) 2017 Proyecciones. Journal of Mathematics | en |
| dc.source | Proyecciones (Antofagasta); Vol. 36 No. 1 (2017); 13-27 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 36 Núm. 1 (2017); 13-27 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2017 | |
| dc.title | Yet another variant of the Drygas functional equation on groups | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |