Show simple item record

dc.creatorTiedra de Aldecoa, Rafaeles
dc.date2017-04-06
dc.date.accessioned2025-10-06T15:05:06Z
dc.date.available2025-10-06T15:05:06Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1399
dc.identifier10.4067/S0716-09172017000100006
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255524
dc.descriptionWe consider flows, called Wu flows, whose orbits are the unstable manifolds of a codimension one Anosov flow. Under some regularity assumptions, we give a short proof of the strong mixing property of Wuflows and we show that Wu flows have purely absolutely continuous spectrum in the orthocomplement of the constant functions. As an application, we obtain that time changes of the classical horocycle flows for compact surfaces of constant negative curvature have purely absolutely continuous spectrum in the orthocomplement of the constant functions for time changes in a regularity class slightly less than C2. This generalises recent results on time changes ofhorocycle flows.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1399/1195
dc.rightsCopyright (c) 2017 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 36 No. 1 (2017); 95-116en
dc.sourceProyecciones. Revista de Matemática; Vol. 36 Núm. 1 (2017); 95-116es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2017
dc.titleSpectral properties of horocycle flows for compact surfaces of constant negative curvaturees
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record