Show simple item record

dc.creatorBoni, Théodore K.es
dc.creatorKouakou, Thibaut K.es
dc.date2017-04-06
dc.date.accessioned2025-10-06T15:05:06Z
dc.date.available2025-10-06T15:05:06Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1407
dc.identifier10.4067/S0716-09172008000300004
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255532
dc.descriptionThis paper concerns the study of the numerical approximation a semilinear parabolic equation subject to Neumann boundary conditions and positive initial data. We find some conditions under which the solution of a semidiscrete form of the above problem quenches in a fi- nite time and estimate its semidiscrete quenching time. We also prove that the semidiscrete quenching time converges to the real one when the mesh size goes to zero. A similar study has been also investigated taking a discrete form of the above problem. Finally, we give some numerical experiments to illustrate our analysis. es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1407/1203
dc.rightsCopyright (c) 2008 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 27 No. 3 (2008); 259-287en
dc.sourceProyecciones. Revista de Matemática; Vol. 27 Núm. 3 (2008); 259-287es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2008
dc.titleNumerical quenching for a semilinear parabolic equation with a potential and general nonlinearitieses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record