| dc.creator | Boni, Théodore K. | es |
| dc.creator | Kouakou, Thibaut K. | es |
| dc.date | 2017-04-06 | |
| dc.date.accessioned | 2025-10-06T15:05:06Z | |
| dc.date.available | 2025-10-06T15:05:06Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1407 | |
| dc.identifier | 10.4067/S0716-09172008000300004 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255532 | |
| dc.description | This paper concerns the study of the numerical approximation a semilinear parabolic equation subject to Neumann boundary conditions and positive initial data. We find some conditions under which the solution of a semidiscrete form of the above problem quenches in a fi- nite time and estimate its semidiscrete quenching time. We also prove that the semidiscrete quenching time converges to the real one when the mesh size goes to zero. A similar study has been also investigated taking a discrete form of the above problem. Finally, we give some numerical experiments to illustrate our analysis. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1407/1203 | |
| dc.rights | Copyright (c) 2008 Proyecciones. Journal of Mathematics | en |
| dc.source | Proyecciones (Antofagasta); Vol. 27 No. 3 (2008); 259-287 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 27 Núm. 3 (2008); 259-287 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2008 | |
| dc.title | Numerical quenching for a semilinear parabolic equation with a potential and general nonlinearities | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |